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I. INTRODUCTION 

The space and time dependent diffusion equations, while 

only an approximation to the more complex transport equation, 

still can not be solved in their general form. They present 

a coupled set of partial differential equations with coef­

ficients which are not, in general, continuous functions of 

position. Since an exact solution can not be obtained, the 

only recourse is approximation techniques. 

The rapidly expanding computer technology with increased 

core space and faster execution times provides opportunities 

to explore a variety of techniques which would previously 

have been out of the question. Brute force techniques of 

old, which had been put aside for more sophisticated math­

ematics, are being implemented to yield powerful tools in the 

solution of difficult problems. Separation of variables and 

finite difference approaches have been used frequently to 

determine space-time solutions to the multigroup diffusion 

equations. While the results obtained from these techniques 

are encouraging, it would seem that other methods should be 

explored. 

The object of this invest;qation is to determine the 

feasibility of obtaining space-time solutions to the multi-

group diffusion equations by taking the Laplace transform 

with respect to time. This leaves a set of ordinary differ­

ential equations in space involving the Laplace transform 
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variable s. The reduced set of equations is solved for 

discrete values of s consistent with the numerical scheme 

to be utilized in returning to the time domain. The in­

version technique utilized is one presented by Bellman et 

al. (1) in a text on numerical inversion from the Laplace 

transform domain. 

A Green's function approach was chosen as the means of 

determining the space dependent s domain solution. Conven­

tional numerical techniques were utilized in evaluating the 

integrals arising from the formulation. Delayed neutrons 

were not considered but there would be little difficulty 

extending the method to include them. 

A program was written to test the method and the results 

obtained are compared to WIGLE-40. There was no attempt to 

optimize the program in terms of computer calculation time 

or solution accuracy. There are many variables in the method 

which could affect both the speed and accuracy of the program 

and there is no reason to believe that either or both could 

not be improved. Some suggestions along this line are in­

cluded in topics for further study. 
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II. LITERATURE SURVEY 

Recent space-time work centers around two basic ap­

proaches, modal analysis and numerical solutions. Modal 

analysis is characterized by the generation of an approximate 

solution by means of a finite series of space modes with 

time dependent coefficients. Once the space modes have been 

chosen, the problem becomes one of determining the best set 

of time coefficients. The number of modes necessary to ob­

tain a good approximation depends strongly on the perturba­

tion considered. 

A number of the modal approaches utilize orthogonal 

space modes (2, 3, 4, 5). The orthogonality is utilized in 

the determination of the time coefficients. Another modal 

approach utilizes Green's function modes (6, 7, 8, 9, 10). 

The diffusion equations are written in an integral form with 

a space and time dependent Green's function kernel which is 

subsequently expanded in a finite series of non-orthogonal 

modes. Variational techniques are used to determine the 

time coefficients. Yasinsky (11) also used non-orthogonal 

modes in a time synthesis technique. The major disadvantage 

of the modal approach lies in the fact that a separation of 

variables is implemented and unless a perturbation is reason­

ably well taylored to the modes, a large number of modes may 

be required. 

The most widely known numerical programs are the WIGLE 
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codes (12, 13) which provide the standard to which other 

techniques are compared. These codes utilize finite dif­

ference techniques and can handle non-linear feedback in a 

two-group analysis which may also include delayed neutrons. 

Andrews and Hansen (14) assume that the neutron flux 

and precursor concentrations can be expressed as exponen­

tial functions between.time steps. The second-order spacial 

derivative is approximated by the three-point central dif­

ference formula. The exponential time variation is not 

restricted to be the same at all space points. Their results 

compared favorably with WIGLE-40 in the cases considered and 

computer run times were also comparable. 
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III. THEORETICAL DEVELOPMENT 

A. Analytic Considerations 

The space and time dependent multigroup diffusion equa­

tions in infinite slab geometry may be represented as 

(1) 

»?  ̂• 

S (x,t) = f?(x,t) a. <x<a. , 
g'=l ^ ^ 1 1 1-Î-X 

for the g^^ group and i^^ spacial region. The terms in 

Equation 1 are defined as: 

0?(x,t) = space and time dependent flux for energy 

group g in region i. 

f?(x,t) = space and time dependent external driving 

function. 

D? = diffusion coefficient. 

2? = cross section for removal of neutrons from 

g^^ energy group by all processes. 

Vg = neutron velocity associated with energy 

group g. 

X? = coupling coefficient for transference of 

g'th energy group neutrons to group g in 

region i. Includes both scattering and 

fission processes. 
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N = total number of energy groups considered. 

Unless otherwise specified, all terms without arguments may 

be taken as constants within a given energy group and spacial 

region. 

Equation 1 is Laplace transformed and the resulting 

equation rearranged to obtain 

d20j(x,s) 2 , 
5 - (a?) 0?(x,s) = —-F?(x,s) , (2) 

dx^ ^ ^ ^ 

where 

0?(x,s) = L[0?(x,t)] 

(af)^ = + VSV-VD? 0<}X|<1, 0<V<1 

F?(x,s) = L{f?(x,t)] + [(1-1X?)S? + (l-v)sV^]0?(x,t) 

- Z x̂ ' 909'(x,s) - V"̂ 0|(x,t) 
g'=l 

+ = 0 

The terms fi? and v have been introduced for flexibility and 

are useful in the subsequent numerical treatment. For the 

purposes of this section it is sufficient to know that jj,? 

will be greater than zero. If v is greater than zero, a? 

will be a function of s. To simplify the notation which 

follows, V is taken as zero. 
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A Green's function formulation will be utilized to 

represent an alternate integral form of Equation 2. This 

form is given for each energy group g and region i by 

0?(x,s) = Z 

^j+1 
-a?x 

G?j(x,e)F^(e,s)d£ + A?e ^ + B^e 

(3) 

where G?j(x,e) is seen to represent the response at a point 

X in region i to a perturbation at point g in region j and 

I is the total number of regions. It should be noted that 

had V been taken greater than zero, G?j{x,e) would be a 

function of s since it will be shown to depend on a?. The 

first term on the right hand side of Equation 3 represents 

the particular solution to Equation 2 while the second and 

third represent the homogeneous solution. It will be seen 

that for G?j(x,e) to exist. A? = B? = 0 for all g and all i. 

This will be considered further at a later time but for the 

present the last two terms in Equation 3 as well as the 

group notation will be dropped. Thus for each energy group 

and each spacial region the proposed solution may be written 

as 

0.(x,s) = Z 
^ j = l 

'j+1 

G^j(x,E)Fj(e,s)d£ 

ai<x<ai+i, aj<6<aj+i (4) 
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To verify that Equation 4 represents the particular 

solution to Equation 2, Equation 4 must be differentiated 

twice with respect to x. The first yields 

d0^(x,s) 

dx 

I 
= S 
j = l 
j/i 

1+1 dG^(x,e) 

dx -Fj (e, s)d£ 

where 

dx (x,e)F^(e,s) de 

^i 

dx 

f. *i+l 

X 

G^^(x,e)F^(£,s)de 

G^^(x,6) ai<E<x<a.+i 

G^^(x,e) = 

Gj^(x,e) a^<x<6 <a.^^ 

(5) 

G^^(x,G) denotes the value of the Green's Function in 

region i for e>x and does not denote the square of G^^(x,e) 

Thus G^J(x,£) is continuous in x and s in their respective 

regions when i / j but this constraint has not yet been 

placed on G^^(x,e) at the point x = e. From Liebnitz' rule 
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for taking the derivative of an integral 

d0^(x,s) 

dx 

I r dGj^ (x,£) 

j& 

dx •F j ( e, s ) de 

+ 
^ dG^.(x,G) 
—^ F.(£,s)de 

^i 

n ^i+1 dGT,(x,£) 
+ —is Pi(E,s)de 

X 

+ [G]^^(x,e) - G^^(x,e) ]F^(x,s) 
e=x 

where the continuity constraint on G^^(x,e) at the point 

X = e eliminates the last term above. Again differentiat­

ing with respect to x yields 

a 
dVj^(x,s) I ^ 

dx 
j/1 ̂ 

d G..(x,e) 
—^ F . ( e, s ) de 
dx"^ J 

r d^G^.(x,e) 
^ F. (e,s)de 
dx^ 

d^G?.(x,e) 
^ F. (e,s)de + 
dx^ 
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dG^.{x,e) dG^.(x,e) 
[-% - ]Fi(='S) • (G) 

e=x 

Substituting Equations 4 and 6 into Equation 2 and rear­

ranging yields 

I 
Z 
j=l 
j/i 

[-
dx' 

"i^ij (x,e)]Fj(e,s)d£ 

: D^G^ (X,£) P N 
[ ^ - afc;.(x,£)]F.(e,s)de 

J dx"^ 

^i 

^ d^G^.(x,e) 2 
j j- 11̂  - aTG. (x,e)]F.(E,s)de 
J dx^ J 

dG^.(x,E) dcf (x,E) 
+ [-% ]Fi(::'̂ ) 

e=x 

= F^(x,s)/D^ . (7) 

Thus if the GMj(x,e) are constructed to satisfy the follow­

ing equations 

d^G^j (x, e) 

dx^ 

2 
CC J (XFC) — *1^*^31+1' Sj < E < ay+i, i/j 
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d^G^.(x,E) 1 
- aTG. .(x,e) = 0 

dx^ ^ 
ai<E<x<a.+i 

d^Gjj^(x,e) 
— (x,£) = 0 ii <x<E<a._^^ 

g1^(X,e) — G^^(x,e) 

e=x 

= 0 

E=X 

dGii(x,E) 
dx 

dG^^(x,e) 

dx ] - 1/Di 
e=x 

then Equation 4 represents an alternate integral formulation 

of Equation 2. The general solutions to these equations are 

given by 

CT • X —D-X 
G^j(x,e) =A^^(e)e +B^^(e)e i / j, 

(8a) 

a .X —OC • X 
G^^(X,£) = A^^(e)e 1 + B^^(e)e ^ a^<e<x<a^ i+1 (8b) 

9 a .x -a.X , 
Gf. (x,e) = A. .(e)e + B (e)e ^ + —^sinh a-(e-x) 
XX ii XJ. U.' _• 

1 1 

a. <x<E<a.+i (8c) 

For I spacial regions. Equations 8a,b,c present 21 unknowns 
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(i.e. A^j (e)(e) j=1.2...I). It should be noted that one 

such set will exist for each spacial region i in each energy 

group g. These 21 unknowns must be determined so as to sat­

isfy the boundary conditions and, if I>1, interface con­

ditions given by 

0^(a^,s) = 0 (9a) 

0l(ai^l,s) = 0 (9b) 

(9c) 

D. 
1 

d0i(ai^l,s) 
dx °i+i dx 

(9d) 

Applying these conditions to Equations 8a, 8b, 8c and writ­

ing the resulting set of equations in matrix form yields 

C Aie) = E(e) (10a) 

and hence 

A(E) = C~^E(£) . |C| / o (10b) 

The matrices Aie), C, and Efg) are given for 1=3 by 

A(e) = 

^11 

B^l(e) 

*21 

A3j(e) 

B3i(e) 

Aj^2<e) 

B12U) 

A2j(e) 

632(5) 

AJ3(E)1 

B^3(e) 

A23(e) 

B23(e) 

^33'®' 

B33(e) 
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C = 

^1®1 "^1^1 
5 e 0 0 

Tl' 
®1®2 ^1^2 
Î -Y^e 

0 0 

-v^e -Y2 

—a«a„ 
+Y2G 

0 

0 

"3^3 

0 

0 

0 

-0333 
-e 

0 
^2^3 "^2^3 "3^3 . "*^3^3 

^2® "^2® -Y3® +748 

0 0 0 0 
3334 -^3*4 

where - a^Dr, and by 

"A 
sinh (s-a^) 0 

E(£)=j 

0 

0 

0 

0 

0 

——sinh a^(e-a_) 
oc 2 2 

-cosh a2(^"^2^ 

0 

9 

0 

0 

0 

0 

ĵ slnh 03(6-33) 
3 3 

-cosh a^Ce-a^) 

0 J 
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Since C and E(e) represent known quantities, A(e) and hence 

the various G^^ix,e) can be determined providing jc| / 0. 

If |cj = 0 then G^j(x,e) does not exist. This brings up the 

question of the homogeneous part of Equation 3. If a homo­

geneous solution exists it must satisfy the matrix equation 

Cy = 0 (11) 

where C is the same as above and y is given for 1=3 by 

y = 
: ̂ 2̂ j 

:::t 
;®3 

Thus for a non-zero homogeneous solution, the determinant 

of C must vanish. Therefore a condition for the use of this 

approach, namely that Cj / 0, precludes a non-zero homo­

geneous solution. 

Defining the overall Green's Function matrix G(X,£) for 

I - 3 to be 

1 

I 
G^^(x,c) G^gfX'E) G^^{x,e) I 

(x,^) — £,) G , s) , (12) 

\ G^J^{x,e) G^^{x,e) G^^(x,e) ' 
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then G(x,e) may be obtained by 

G(x,e) = B(x)A(e) + D(x,£) (13) 

where for 1=3 

B(x) = 

[aix 
; e 
/ 

0 

0 0 

0 

0 

0 

CC QX —CCQX 
e ^ e ^ 0 

0 
a 3% 

0 

0 

-a^x I 

and D(x,e) is defined by 

D(x,e) = sinh a-,(£-x), sinh a^/E-x), 
ai^i ± ^2 2 ^ 

sinh ao(e-x)] 
^3 3 

Substituting Equation 10b into Equation 13 yields 

G(x,S) = B(X)C~^E(E) + D(x,E) (14) 

The elements of the matrix G(x,e) correspond to the 

desired G^j(x,E) in Equation 4 since 

G(X,E) = G^J(X,E) ^I-^^^^I+L' ^J + 1 (15) 

Defining 

h(E)d£ 

to be the integral of h(£) over its region of definition 

in X space, and restoring the energy group notation. 
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0^(x,s) = j g'^(x, e)F^(e,s)de (16) 

X 

represents the set of equations given by Equation 15 with 

i = 1,2,...I. Thus ̂  (x, s) and f"^(£,s) are defined as 

"1 
0^(x, s) • 

0^(x,s) = 

and 

0^(x,s) 

0^(x,s) 

(e,s) 

|F|(e,s) 

: F^(e,s): 

For N energy groups, there will be N equations like Equa­

tion 16. This set represents an implicit integral formula­

tion since F^(x,s) contains coupling terms from other groups. 

To demonstrate this and provide a basis for the energy group 

matrix structure which follows, F^(x,s) is broken into its 

components 
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N 
F^(x,s) = o909(x,s) - 2 (x,s) - V~^^(x,t) 

g=i 9 t=0 

where 

X9'̂ 9 = DIAG[xf''̂ ,̂ .. X? +9] 

and 

il Q _ DIAG[(l-ti^) 2f + (l-v)sVg^, .../ (l-^^)Z^+(l-v)sVg^] 
,-l 9\T.9 ,-li 

Equation 16 now becomes for each group g 

09(x.s) = 1 Ĝ (x,e)Q̂ (̂e.s)d£ - S 1 G9(x,&)X9'̂ ag9(E,s)dE 
^x g'= 1 X 

- V -1 
9 

G^fx, e)^(e, t) de 
t=0 

(17) 

which may be written in matrix-operator form as 

0(x,s) = GF0(x,s) - Y(X) (18) 

where 

^(x,s) = 

^ (x,s) 

0^(x,s) 

g^(x,s) 
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y(x) = 

V -1 G^(x,£)0^{e,t) 
X 

de 
t=0 

f G^(x,e)0^(e,t) 
& 

de 
t=0 

and the matrix of operators GF is defined by 

GF,„ ... GF. ' G^ll ""12 IN 

! GF21 GF22 
GF 

GF N1 • GF NN 

(19) 

Where the operation GF^^,^ (x,s) is defined by 

GF_,^'(x,s) = - I G9(x,E)[X9'^-9 -
y y jy y y 

and 

bg'g = 0 9' / g 

1 g' = g . 

Solving Equation 17 for 0(x,s) yields 

-1-, 0(x,s) = [I - GF]"-^y(x) ( 2 0 )  

Equation 20 is not particularly useful from an analytic view 
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point but is useful numerically. The integrals involved 

may be approximated numerically to yield a form exactly 

like that of Equation 20. 

B. Numerical Considerations 

The integrals arising from the Green's function formu­

lation pose an unusual problem. The problem originates with 

the discontinuous first derivative of G(x,£) at e = x. Con­

sider Equation 21, a special case of Equation 4, which rep­

resents the flux in region one from a two region model. 

a„ a-
2 

02^(X,£) = GT  T  (x, £)FT  (e,s)d£ + GT  ^ (x, £)F^ (£, s) de 
'3 

'11' '^'"1 
ai 32 

12' '^'2 

(21) 

to perform the integration, the first integral must be di­

vided into two parts at the point s - x yielding 

X a. 

0^{X,E) = Gii(x,£)Fi(e,s)dE + 

^1 X 

^3 

2 2 
G^i(x,E)Fi(e,s)d£ 

+ j GI2e)^2(e,s)d£ . (22) 

^2 

Consider an arbitrary grid in which equal spacing exists 

within a region but the spacing may vary from region to 

region. Let x^ = a^, = a^, ~ ^3* Approximate 
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Equation 22 by 

^ 1 0l(x^,s) = 
1=1 

NI 2 
+ Z w^G^j^{x^,x^)F^ (x^, S)A3̂  

i=n 

N2 
+ Z w.G,„(x ,x.)F„(x.,s)a^ (23a) 
i=Wl 1 -i-'i n 1 z X z 

where AJ = grid spacing interval in region j. The depend 

on the number of terms in each summation as well as the index 

i. It should be noted that there is an overlap of indexing 

between successive summations. This does not imply that 

weights with the same index are equal. It does imply that 

the last term of the preceding summation plus the first term 

of the following summation make up the contribution to 

0^(x^,s) from F(x s) in the area near . Figure 1 illus­

trates this nicely. For ^^(Xg/s) the w^ and w^ from the 

first summation in Equation 23a are the first order (trape­

zoid rule) weights and w^, Wg, w^ and w^ from the second 

summation are the third order weights. For 0^(x2,s) both 

summations would utilize second order weights. The third 

summation would use fourth order weighting for x^^x^yxg,... 

Xg. For x^ = x^,...xg, the second summation would be di­

vided at x^ = x^ and the first would span the first region 

thereby using fourth order weights- Thus the order of 
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Figure 1. Sample grid for two region with interface at 

^N1 ~ ^5 
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approximation of the integrals in Equation 21 is a function 

of the location of the discontinuity. As a consequence, the 

flux determination for a point near a boundary is less ac­

curate than those further from the boundary. Fortunately 

the effect of this can be checked by simply varying the grid 

size and comparing the resulting flux profiles near the 

boundary. 

In Equation 23a some of the notation is unnecessary. 

Since the Green's function is continuous, the subscripts 

denoting the region of and x^ may be dropped. The super­

script denoting which functional representation to use when 

x^ and x^ are in the same region may also be dropped as the 

relative sizes of x^ and x^ determine this. The region no­

tation on the driving function and the spacing interval must 

be retained as they are not, in general, continuous at the 

interface. Equation 23a may thus be rewritten as 

0(x^,s) = S w^G{x^,x^) (x^, S)A3̂  + Z w^G(x^,x^)F^(x^,s)A2 
n N1 

i-1 i=n 

N2 
+ Z Wj^G(x^,x^)F2(x^,s)A2 
i=Nl 

(23b) 

and the expression for the flux in region two is 
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NI n 
0(x„,s) = Z w.G(x ,x. )F, (x. ,s)AT + Z w.G(x ,x. )F_(Xj,s)A_ n ]_ Il j. X i X II j. ^ j. z 

N2 
+ Z w.G(x ,x.)F (x.,S)A, (23C) 
i=n 1 1 ^ ^ 

a2<Xn^a3 ' 

In general for N regions there will be N expressions contain­

ing N + 1 summations since two summations are necessary when 

x^ and x^ are in the same region. It is convenient at this 

point to consider the group dependence before proceeding. 

0(x ,s), G(X ,x.) and F.(x.,s) should be replaced by 0 (̂X ,s), 11 11 JL J .L 11 

G^(Xj^/X^) and F?(x^,s). Further F?(x^,s) is, in general, 

made up of linear combinations of all group fluxes as well 

as the initial flux for that particular group. F?(x^,s) may 

also contain an external source term which could be s de­

pendent. This would, however, be handled in the same manner 

as the initial flux for group g and need not be considered 

separately. It would become part of y which would be s 

dependent if the external source term were. 

For the two region example, there would be G sets of 

equations like Equations 23b,c for G energy groups. For 

the more general case of G groups and N regions, there 

would be G X N equations each containing N + 1 summation 

terms. 

It is convenient to seek a more compact form for 
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Equations 23b,c for each group g. This form is given for 

the two region case by 

N2 
0^(x ,s) - Z W , G^(x ,x,)F^(x.,s) (24a) 

11 2 HK n JL X 

where G^'{x^,x^) is the jsame as in Equations 23b, c but the 

remaining terms require careful attention. The difficulty 

arises from the overlapping w^ between adjacent summations 

in Equations 23b,c and from the lack of continuity of F^(x^,s) 

at the interface between the two ••egions. F'^(X̂ ,S) is de­

fined by 

F^(x^,s) - F^(X^,s;AJ^ ^i ^N1 

F^tx^.siAg ^Nl (24b) 

and for the present remains undefined at the interface 

x. = X ,. W_. is defined as 1 nl ni 

= w^ i / n,Nl 

and is yet to be defined at i = n and i - Nl. In the gen­

eral case of N regions F^(x^,s) and wn... d be undefined 

at the N-1 interfaces and would be undefined at i = n. 

Complicating the definition of is the fact that it may 

be in either region of the two region case. Referring to 

Equations 23b,c and the two region case 



www.manaraa.com

25 

= WL + n / N1 (24c) nn n n 

where 

w^ = w from summation for which i < n n n — 

2 w = w from summation for which i > n n n — 

irrespective of the region to which n refers. and 

F^(Xj^l,s) cannot be defined separately but must be defined 

as a product. 

where 

= W.^, from summatiC'r. for wtiic:!; i :ili N1 N1 

2 = W„, from sun .mat ion for which i > Nl Ni NI — 

and and F^Cx^^^/s) are defined as they were for 

Equations 23a,b. For the more general case of N regions 

there will be N-1 equations of the form of Equation 24d 

for the additional interfaces. Equations .'4a,b, c must be 

amended accordingly. In Equation 24a, N2 would be replaced 

by N. 

Equation 24a provides the basis from which a final form 

like Equation 20 is encountered. F'^(X̂ ,S) must first be 

broken into its compoments. To better illustrate the 
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procedure, a two energy group, multi-region model will be 

assumed. The Laplace transformed two group equations are 

given for each region i by 

2 1 
id 0-{x,s) 1 11 o o 

D. ^ ZT0(x, s )  =  5V:^0^(x, s )  -  (vZf) f 0 f(x, s )  
1 dx^ 1 11 £ 1 1 

-V~^02(x,t){ (25a) 
' t=0 

1^0^ (x,s; + (sv~2 + 62:j)0j(x,s) D 
gd 0^(x,s) 

dx' 
- 1^0^(x, s) - -

- V^0^(x, t) j (25b) 
it=o 

where only thermal group fissions are considered with all 

fission neutrons entering the fast group. The absorption 

cross section for fast neutrons is considered negligible 

and all neutrons removed from the fast group enter the ther­

mal group. The system is assumed initially critical prior 

to a step perturbation in the thermal cross section at 

t = 0. The quantities on the right hand sides of Equations 

1 2 25a,b are F\(x,s) and F\(x,s) respectively. 

From Equation 24a, Equations 25a,b become 
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0^(x^,s) = S W^^G^(x^,x^) [sV^V(x^,s) - (vSf)?0^(x^,s) 
i=l 

(26a) 
t=0 

0^(x^,s) = S W^^G^(x^,x^) [-2:];0^(x^,s) + (xV~^+ôrJ)0^(x^,s) 
i=l 

V-l02(x.,t) (26b) 

t=0 

where the subscript i now denotes the grid position and 1-2 

is the total number of interior mesh points. This set of 

equations can be written in matrix form as 

0^(s) ^GF^^(s) GF^^(s)' ^^(s) -1 
Y 

,21 22 w2, GF^ (s) GF^^(s) 0 (s) y^: 
(27a) 

where 

0^(x^,s) 

?9(s) = 

0®(Xj, 2,s). 
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N2 , _ 
-S W\,G9(xi,x )V ^09(x.,t) 
4 — 1 y 

t=0 

! . i 
y = i . I (27b) 

! • i 
N2 

i -.2, "N21°®<^N2'^'^ 0«(x,,t) 
t=0 ; 

L J 

and is a matrix each element of which is given by 

Gfni' = "niGSlXn.XjlfS'ls) 

where f? (s) represents terms such as -ivZ^)^, 

—1 2 and (sVg + 6Zj_) from Equation^ 2ba,b. 

Equation 27 may :inw be written in the same form as 

Equation 20. 

- 1  

0(s) = [I - GF(s), y . (28) 

The important difference is that this is an explicit 

equation allowing 0(s) to be determined numerically. This 

formulation can easily be extended for any number of energy 

groups, space regions and space points. The practical limi­

tations are brought about by such considerations as storage 

space in the computer and the expense associated with car­

rying out the inversion of [I-GF(s)]. An important con­

sideration is the fact that the matrix |I-GP(s)] ̂ is in­

dependent of y and hence a wide range of y could be considered 
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perturbations must occur across an entire region and thus 

the regions should be carefully chosen in generating this 

matrix. A time dependent external source can be utilized 

so long as this time dependence may be handled by the Laplace 

transform. 

The ultimate worth of a solution to a partial dif­

ferential equation in the Laplace transform domain is de­

termined by the ability to obtain the time domain solution 

from it. One of the stated goals of this thesis was to 

determine whether an inversion technique presented in a 

text by Bellman et (1) would perform the task in this 

case. The method, which will be outlined, is one of a num­

ber suggested in this text and appeared particularly suit­

able as it utilizes a polynomial in to approximate 

the time behavior. Since the diffusion equation is first 

order in time, one might expect approximately exponential 

behavior for step perturbations in a system with otherwise 

time stationary parameters. 

The Laplace transform of u(t) is given by 

C. Numerical Inversion 

F(s) 
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which, may be written as 

Pt 

P(P/a) = e ^u(t)dt , (29) 

OO __ 

a 

with p = as. 

Defining the change of variables r = and dividing 

by a/ Equation 29 becomes 

F(P/a.) ^ 
a 

r^~^u(-a In r)dr . (30) 

Making the assumption that u(-a In r) may be well approxi­

mated in the mean square sense by a polynomial in r, i.e. 

that u(t) is well represented as a finite series in 

leads directly to the use of a Gaussian quadrature to rep­

resent this integral. The Gaussian quadrature for N points 

gives the same accuracy as the more elementary quadratures 

would for 2N points. That is to say that with N points it 

approximates the integrand as a polynomial of order 2N-1 

as would the more elementary quadratures with 2N points. 

This increased accuracy is paid for through the loss of 

freedom to specify the points or discrete times at which 

u(t) is to be determined. Equation 30 is thus represented 

by the approximation 
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^ - E w.r?~^u(-a In r^) P = 1,2,...N 
^ i=l ^ ^ 

(31) 

where = -a In r^ and r^^ are the roots of the polynomial 

Pj^(r). This may be solved for u(-a In r^) and rewritten in 

matrix form as 

-1-u = A F (32) 

where 

u = 

u(-a In r^) 

u(-a In r^) 

and 

F — — 

F(i) 

P(f) 

and the i^^ row and the column of A is given by 

Reference 1 specifies the elements of A~^/ the roots 

r^/ and -In r^ for N = 3 through N = 15. 

As a rule one wishes to obtain the inversions for as 
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large an N as possible to obtain the best approximation. 

The problem is not as simple as that in this case. The 

matrix A is ill conditioned in the sense that A~^ contains 

elements of both sign which are large in magnitude. This 

condition worsens as N increases and causes large changes 

in u(t) for correspondingly small changes in F(s). This 

means that for large N, an accurate determination of F(s) 

is necessary to obtain u(t). If one has accuracy to four 

significant figures for F(s) and a change in the fifth sig­

nificant figure of F(s) produces a change in the first sig­

nificant figure of u(t), one can attach little meaning to 

the values of u(t) obtained. The number of significant 

figures obtainable in 0(s) will thus be an important factor. 

Some comments in reference 1 are pertinent in defining 

the limitations of the inversion which become limitations 

of this method. It points out that the method cannot be ex­

pected to handle high frequency oscillations in time behavior. 

If success is to be expected u(t) must be a reasonably smooth 

function of time. This is not seen to be a severe limitation 

in the case at hand but should serve as a warning not to 

expect good results from, for instance, a high frequency 

cosine external source input. 
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IV. APPLICATION AND MODEL USED 

The reactor model chosen to test the formulation in a 

two group configuration is shown in Figure 2. 

1 2 3 

reflector core reflector 

0.0 15.0 . , , 52.0 67.0 
position (cm) 

Figure 2. Reactor model 

The steady state initial parameters are given in Table 1. 

The model is a slab representation of a light water moder­

ated and reflected reactor with enriched uranium fuel. As 

may be seen in Table 1, the fast neutron absorption cross 

section is taken to be zero and all fissions are assumed to 

occur in the thermal group with the fission neutrons enter­

ing the fast group. This model was used previously by Loewe 

(15) and later by McFadden (10). The original intention was 

to consider the same perturbations as the latter and compare 

results along with those obtained from WIGLE-40. A problem 

arose, however, due to the fact that the perturbations he 

considered were given in terms of percent reactivity inser­

tion rather than the magnitude of cross section change. As 

this parameter is given as an output from WIGLE-40, consider­

able time and expense might be expended in determining the 
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Table 1. Steady state initial parameters 

Parameter Units Core Reflector 

sec/cm 3.50(10-7) 3.50(10-7) 

v;' sec/cm 4.55(10"^) 4.55(10-6) 

Df cm 1.24 1.14 

Ds cm 0.26 0.16 

Z-ri 
-1 cm 0.0207 0.0346 

P 1.0 1.0 

&al 
-1 cm 0.0 0.0 

^ r2 
-1 cm 0.0817 0.0118 

v2 g 
neutrons 
fission-cm 0.0985 0.0 

appropriate cross section change which would produce this 

same reactivity change. Thus WIGLE~40 will serve as the 

basis for comparison in the problems considered. 

The model is especially useful since the unperturbed 

state is symmetric about the center. Choosing a symmetric 

space grid thus constrains the Green's function to be sym­
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metric. Since the symmetry is not used in the formulation, 

it provides a good check of the Green's function generated. 

In the symmetric problem the following relation must exist: 

G(x,e) = G(£,x) = G(67.0-x, 67.0-d= G(57.0-e, 67.0-x) 

The Green's functions for problem one exhibit this. 

One must decide upon the space dependence of the per­

turbation before setting up the Green's function. This is 

a direct consequence of the desire to avoid integrating 

across a discontinuity in either a system property or an 

external driving function. Thus if one wishes to perturb 

only a part of one of the regions in the model considered, 

this part should be made into a region itself. In the prob­

lems which follow there will be no external source considered. 

If one were to be considered it would become part of y and if 

the external driving function were time dependent, y would be 

a function of s. The concept of an external source as con­

sidered here refers to a space and time dependent source of 

neutrons which is not a function of the flux level. It does 

not allow a current source at a boundary for example. Such 

a source would change the original boundary conditions which 

would in turn change the Green's function. This could have 

been incorporated but as this study is an examination of the 

feasibility of the general approach it was not considered. 

2 Problem one considers uniform perturbations of Eg in 

the second region of the reactor model. Thus a symmetric 
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space grid may be utilized and this provides a number of 

checks in developing the program. For example, both the 

fast and slow flux in both the s domain and the time domain 

should be symmetric. The extent to which they deviate from 

symmetry provides insight for determining possible areas of 

difficulty. It should also give an indication of the upper 

limit of the number of significant figures contained in 

0(x^,Sj). That is, if the s domain flux at symmetric points 

agrees to only three significant figures, the s domain flux 

cannot be presumed more accurate than this. As mentioned in 

the previous section this is an important consideration when 

returning to the time domain. 

Figure 3 shows a plot of the Green's function for the 

fast group of the two-group, three region model given in 

2 2 i problem one with \^2^2 ~ and = 1.0 for all other com-

2 2 binations of i and j. The particular choice of ̂ 2^2 some­

what arbitrary and doesn't affect the fast group Green's 

2 function but it is necessary to use a value less than of 

Table 1 in order to obtain the inverse of the thermal group 

boundary matrix. This inverse is necessary in determining 

the thermal group Green's function. 

2 Theoretically the choice of should not affect the 

final s domain solution. The solutions were observed, how-

2 2 ever to show some sensitivity to the choice of ^2^2" It is 

felt that this sensitivity is due, at least in part, to the 
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w 

4 
O 

10.0 20.0 30.0 40.0 
Position (cm) 

50.0 60.0 

Figure 3. Fast group Green's function for problem one for 
several values of e 
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grid spacing used in the analysis of this effect. It should 

be noted that inversions to the time domain with these solu­

tions were unsuccessful. A full investigation of this sen­

sitivity, using the finer grid spacing of the final analysis, 

was not made due to the increased computer cost associated 

with the finer spacing. 

With the Green's functions determined for a particular 

grid, the driving function for each group may be obtained 

from Equation 27a. The initial steady state flux is obtained 

using a formulation from Glasstone and Edlund (16) along with 

—  1  — 2  the parameters given in Table 1. A plot of y and y is 

shown in Figure 4 for the configuration described previously. 

The weighting functions utilized in evaluating the integrals 

were obtained from the Handbook of Mathematical Functions 

(17). To avoid using negative weights, which occur in ap­

proximations involving more than eight points (i.e. approx­

imating the integrand by a seventh order polynomial), those 

of higher order are broken into combinations of eight points 

or less. A nine point approximation is accomplished by two 

five point approximations and so on. 

The Green's function and hence the driving function are 

independent of s. This need not be the case but it does 

avoid the necessity of recalculating them for each discrete 

value of s considered. In terms of the development in Sec­

tions III.A V is zero for all cases considered. 
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10.0 20.0 30.0 40.0 

Position (cm) 

50.0 60.0  

Figure 4. Driving functions for problem one 



www.manaraa.com

40 

2 Problem two considers a perturbation in ^2 of a four-

region model obtained by inserting a boundary at 24 cm in 

the three region model above. The second region extends from 

15 cm to 24 cm. This configuration presents a nonsymmetric 

perturbation. The locations of the discrete points arising 

from the space grids chosen for problems one and two are 

given in Table 2. In problem two the initial steady state 

parameters are the same as for problem one. As may be seen, 

most of the points for problem two coincide with a one cm 

grid. Ideally, one might obtain solution with the grid shown 

for problem two and then repeat the procedure for the grid 

with points every cm. Then y, 0(x^,Sj), and 0(x^,tj) could 

be compared at each point of correspondence to obtain an 

indication of the accuracy of each calculation. Obtaining 

0(x^,Sj) and 0(x^,tj) with the finer grid was entirely pro­

hibitive from the standpoint of computer cost and only the 

determination of y was accomplished. This comparison showed 

agreement to within + 2 in the fourth significant figure 

in the worst cases and within + 2 in the fifth significant 

figure for most cases. This indicates that the grid chosen 

adequately approximates the integrals involving the Green's 

functions and the initial steady state fluxes. No implica­

tions can be drawn as to the accuracy of 0(x^,Sj) since the 

space dependence is different and an inversion of a matrix 

—1 —2 is involved, however, the results obtained for y and y were 
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certainly encouraging. 

With the group Green's functions and the driving func­

tion determined, the s domain flux may be determined by Equa­

tion 28. The elements of GF(s) are defined in the same man­

ner as described in section III.B. 

Table 2. Space grids for problems one and two 

Problem one Problem two 

0 . 0  
2.5 
5.0 
7.5 
10.0 
12.5 
15.0 
16.54 
18.03 
19.63 
21.17 
22.71 
24.25 
25.79 
27.33 
2 8 . 8 8  
30.42 
31.96 
33.5 

48.92 
50.46 
52.0 
54.5 
57.0 
59.5 
62.0 
64.5 
67.0 

0 . 0  
2.5 
5.0 
7.5 
10.0 
12.5 
15.0 
1 6 . 0  
17.0 
18.0 
19.0 
2 0 . 0  
2 1  . 0  
22.0 
23.0 
24.0 
2 6 . 0  
2 8 . 0  

30.0 
32.0 
34.0 
36.0 
38.0 
40.0 
42.0 
44.0 
46.0 
48.0 
50.0 
52.0 
54.5 
57.0 
59.5 
6 2 . 0  
64.5 
67.0 
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V. RESULTS AND DISCUSSION 

Five variations of the two problems previously discussed 

will be considered in this section. For convenience they are 

listed in Table 3 and will be referred to by case number in 

the discussion that follows. 

Table 3. Pertinent parameters for variations of problems 
one and two considered 

Case 
number 

Problem Perturbation 

(bsl) 

Time scale 
(a) in core 

All other 
t^i 

1 one -.003 .001 .01 1.0 

2 one .003 .001 .01 

O
 

«—1 

3 two -.006 .001 .01 1.0 

4 two -.006 .002 .01 1.0 

5 two -.006 .010 .001 

o
 

«—1 

The s domain solutions are obtained by inserting s = P/a 

into Equation 28 for p = 1,2,...N and performing the inversion. 

The scale factor a affects both the time scale and the poly­

nomial expansion as shown in section III.A. Thus the de­

termination of the s domain solutions are governed by time 

domain considerations. 

As the s domain solutions have no basis for comparison, 

only the thermal group of case 4 will be shown. The fast 
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group solutions are uninteresting in both the s domain and 

time domain as far as space dependence for the problems con­

sidered as they deviate little from the steady state shape. 

Figure 5 gives the first four 0 (x,s) corresponding to 

p = 1,2,3,4 for case 4. This set is typical of all sets of 

s domain solutions in that as p and hence s increase, the 

magnitude of the s domain flux decreases and the difference 

in the magnitude of solutions for successive values of p 

also decreases. If this were not the case, inversion to the 

time domain would appear to be impossible. This statement 

is in the nature of speculation and is offered without proof 

but this would seem to parallel the case of a divergent ser­

ies. The mere fact that a set of s domain solutions exhibit 

this trend is no guarantee an inverse can be obtained. Gen­

erally, the s domain solutions give no indication as to 

whether or not an inversion to the time domain can be obtained. 

As a result of the Gaussian Quadrature utilized in the 

inversion, the discrete times for which the flux are obtained 

are fixed by t^ = -a In(r^) where r^ are the roots of the 

Legendre polynomial of order N. The values of In(r^) for 

N = 3,4,5,5 are given in Table 4. 

The tendency of the values of t^ to cluster at the lower 

end of the time range makes plotting space profiles for all 

values of t^/a difficult. Adding to the difficulty is the 

spacial scatter which will be noted in the plots which follow. 
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Figure 5. s domain thermal flux for case 4 
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Table 4. Values of t^/a = In(r^) 

N tj^/a ^2^0 tg/a t^/a tg/a te/a 

3 2.183 0.693 0.120 X % X 

4 2.667 1.109 0.400 0.0720 X X 

5 3.060 1.466 0.693 0.262 0.048 X 

6 3.388 1.776 0.966 0.479 0.186 0.034 

Plots of the space profiles will be restricted to the one at 

time t^/a for as many values of N as inversions have been 

obtained. In addition, the fast flux space profiles are 

uninteresting and except for case 4 will not be given. 

Plots of the time dependent flux shape at the space 

point of maximum flux in the core will be given for all 

t^/a of all N for which time inversions were obtained. The 

WIGLE-40 solution at this same point will be given for 

comparison. 

For case 1, inversions for N = 3,4 were all that could 

be obtained. These are given in Figure 6 along with the 

steady state initial solution and a profile from WIGLE-40. 

The spacial scatter is emphasized by connecting points with 

straight lines as opposed to using a fitted curve. The 

choice of a = .001 was made to obtain solutions over a time 

range of zero to slightly over three milliseconds. There is 
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10.0 20.0 30.0 40.0 
Position (cm) 

50.0 60.0 

Figure 6. Thermal group space profiles from case 1 
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some basis for feeling that the time scale chosen affects 

the quality of the space profiles as well as the order of 

inversion which may be obtained and the degree to which agree­

ment with WIGLE-40 is obtained. This will be demonstrated in 

comparison of cases three and four. 

The time dependence of both the fast and slow flux along 

the centerline is given in Figure 7. The agreement at times 

tj^/a for N = 3,4 is reasonably good but considerable scatter 

is evident at times t^/a, i>1. 

The time dependence of the fast and slow center line 

flux from case two is given in Figure 8. A smoother time 

dependence is noted as the scatter is much less for t^/a, 

i >1. Agreement with WIGLE-40 is not as good, however, for 

times t^/a and N = 3,4 as for case one. In addition the 

space profile (not shown ) exhibits more scatter in case two 

than in case one. 

No attempt was made to improve the quality of the solu­

tions for the symmetric case. It was felt that a nonsymmetric 

perturbation would provide more of a test of the ultimate 

usefulness of the general approach and would be more inter­

esting. 

A plot of the space profile for N = 3 at t^/a is given 

in Figure 9 for case 3. The profile for N = 4 at t^/a dis­

played considerably more scatLer and was not sufficiently 

displaced from the one given to avoid some overlapping so 
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Figure 7. Time dependent fast and thermal centerline flux 
for case 1 
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Figure 8. Time dependent fast and thermal centerline flux 
for case 2 
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Figure 9. Thermal group flux for case 3, N=3 
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it is not shown. The time dependence at x = 32 cm is given 

in Figure 10 along with the WIGLE-40 solution for the same 

point. The agreement is not especially good and scatter is 

evident. 

Case four concerns the same problem as case three with 

a scale factor twice as large. Inversions were obtained for 

N = 3,4,5,6 and the profiles associated with time t^/a for 

each N are shown in Figure 11 (thermal group) and Figure 12 

(fast group). They are seen to be considerably smoother 

than those of problem three with the smaller time scale. 

The time dependence of the thermal flux at x = 32 cm is 

given in Figure 13. It is seen that the WIGLE-40 solution 

is increasing at a faster rate. The technique under con­

sideration has been checked with zero perturbation and 

found to yield a constant steady state output. A zero 

perturbation was inserted into WIGLE-40 and the results 

for both the fast and slow flux are plotted in Figure 14. 

In 6.0 msec an increase of 5% is noted. At 6.0 msec in 

Figure 13, the flux as obtained from WIGLE-40 is about 5% 

higher than that obtained by the method under investiga­

tion. This might approximately account for the differences 

between the two solutions. 

2 2 2 2 
Case 5 which represented changes in a, ^2^2' ^"*"3^3 

was unsuccessful in that no inversions to the time domain 

were accomplished. 
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Figure 10. Time dependent flux for case 3 at x = 32.0 cm 
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Figure 11. Thermal group flux for case 4, N = 3,4,5,6 
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Figure 12. Fast group flux for case 4 
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The results obtained demonstrate that an approach of 

this type is feasible. There can be no doubt that the tech­

nique needs further investigation and refinement. A number 

of questions remain unanswered. In particular the full effect 

2 of the values of a and on the ultimate solution was not 

2 established. The fact that p,^ had an effect on the s domain 

solutions for grids with relatively wide spacing is not sur­

prising as the approximations of the integrals would not be 

as good as for grids with finer spacing. Inversion to the 

time domain could not be accomplished in these cases. 

The fact that the quality of the solution depends on 

the time scale is unfortunate since this limits the range 

over which solutions may be obtained. This could be overcome 

to a large extent, however, if the solutions were sufficiently 

accurate to allow using the space profile from t^/a from the 

highest order inversion obtained as the initial flux for an­

other set. This would require a large degree of confidence 

in the technique as it causes a propagation of errors. An 

inexpensive method of establishing a "best value" of the 

scale factor would also be highly desirable. 

The top priority at this point would, however, have to 

be the reduction of computer cost in obtaining these solu­

tions. Since the inversion associated with Equation 28 rep­

resents by far the largest expense, it must come under close 

scrutiny. One means of dispensing with it would be to use a 

finite difference technique to obtain the s domain solutions. 
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Another possibility would be to leave the s dependent part 

of the matrix on the right hand side of Equation 26. This 

would change Equation 28 to one of the form 

0(s) = [I - GF]"^D(s)^(s) + [l-GF]~^y 

thus the matrix [I-GF] is not s dependent and need be de­

termined only once in obtaining the set of s domain solutions. 

This creates an iterative problem which could be solved by 

conventional techniques provided the absolute value of the 

spectral radius associated with the matrix [I-GF] ̂D(s) 

was less than one. D(s) is a block diagonal matrix with 

multiples of s in the blocks. 

It is also possible that the use of Laguerre Polynomials 

in place of Legendre Polynomials in the inversion to the time 

domain would yield a more powerful inversion technique. In 

any case the use of the Laplace transform in obtaining solu­

tions to the multigroup diffusion equations does appear to 

have possibilities. 
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VI. TOPICS FOR FURTHER STUDY 

Several topics have been suggested in the previous 

section. The possibility of using Laguerre Polynomials to 

obtain the inversion to the time domain could be investigated. 

These polynomials are orthogonal to the weighting function 

over the interval (0, oo) and appear well suited to the Laplace 

transform. 

Two alternative methods for obtaining the s domain 

solutions are suggested in the form of a finite difference 

technique and an iterative approach. These should be 

quicker and hence less expensive on the computer. 

If the current inversion scheme is to be used, the 

effect on the scale a needs further investigation. If the 

iterative Green's function approach is pursued, the effect 

of if any, should be established for the grid used. If 

sufficient funding is available, the effect of these param­

eters might be established with the approach used here. It 

would be useful in the iterative approach to have these 

effects already established. 
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